
COBS Documentation
Release 0.1.2

Timo Bingmann

Nov 24, 2021

Contents

1 Table of Contents 3
1.1 Tutorial for COBS Python Interface . 3

i

ii

COBS Documentation, Release 0.1.2

COBS (COmpact Bit-sliced Signature index) is a cross-over between an inverted index and Bloom filters. Our target
application is to index k-mers of DNA samples or q-grams from text documents and process approximate pattern
matching queries on the corpus with a user-chosen coverage threshold. Query results may contain a number of false
positives which decreases exponentially with the query length and the false positive rate of the index determined at
construction time. COBS’ compact but simple data structure outperforms other indexes in construction time and query
performance with Mantis by Pandey et al. in second place. However, unlike Mantis and other previous work, COBS
does not need the complete index in RAM and is thus designed to scale to larger document sets.

More information about COBS is presented in our current research paper Timo Bingmann, Phelim Bradley, Flo-
rian Gauger, and Zamin Iqbal. “COBS: a Compact Bit-Sliced Signature Index”. In: 26th International Sympo-
sium on String Processing and Information Retrieval (SPIRE). pages 285-303. Spinger. October 2019. preprint
arXiv:1905.09624.

See the tutorial page on how to use COBS in python scripts.

Contents 1

https://arxiv.org/abs/1905.09624

COBS Documentation, Release 0.1.2

2 Contents

CHAPTER 1

Table of Contents

1.1 Tutorial for COBS Python Interface

1.1.1 Installation

Installation of COBS with Python interface is easy using pip. The package name on PyPI is cobs_index and you
need cmake and a recent C++11 compiler to build the C++ library source.

$ pip install --user cobs_index

1.1.2 Document Lists

COBS can read and create an index from the following document types:

• FastA (.fasta, .fa, .fasta.gz, .fa.gz)

• FastQ (.fastq, .fq, .fastq.gz, .fq.gz)

• McCortex (.ctx, .cortex)

• text files (.txt)

• MultiFastA (.mfasta)

The document types are identified by extension and compressed .gz files are handled transparently. The set of k-mers
extracted from each file type is handled slightly differently: for FastA files each continuous subsequence is broken
into k-mers individually, while McCortex files explicitly list all k-mers, and for text files the entire continuous file is
broken into k-mers. Each document creates one entry in the index, except for MultiFastA were each subsequence is
considered an individual document.

COBS usually scans a directory and creates an index containing all documents it finds. For more fine-grain control,
document lists are represented using DocumentList objects. DocumentLists can be created empty or by scanning
a directory, files can be added, and they contain DocumentEntry objects which can be iterated over.

3

https://pypi.org/project/cobs_index

COBS Documentation, Release 0.1.2

import cobs_index as cobs

doclist1 = cobs.DocumentList("/path/to/documents")
print("doclist1: ({} entries)".format(len(doclist1)))
for i, d in enumerate(doclist1):

print("doc[{}] name {} size {}".format(i, d.name, d.size))

doclist2 = cobs.DocumentList()
doclist2.add("/path/to/single/document.fa")
doclist2.add_recursive("/path/to/documents", cobs.FileType.Fasta)
print("doclist2: ({} entries)".format(len(doclist2)))
for i, d in enumerate(doclist2):

print("doc[{}] name {} size {}".format(i, d.name, d.size))

1.1.3 Index Construction

Compact indices are constructed using the functions compact_construct() or
compact_construct_list(). The first scans a directory for documents and constructs an index from them,
while the latter takes a explicit DocumentList. Note that the output index file must end with .cobs_compact.

cobs.compact_construct("/path/to/documents", "my_index.cobs_compact")

Parameters for index construction may be passed using a CompactIndexParameters object. See the class doc-
umentation for a complete list of parameters. The default parameters are a reasonable choice for most DNA k-mer
applications.

import cobs_index as cobs

p = cobs.CompactIndexParameters()
p.term_size = 31 # k-mer size
p.clobber = True # overwrite output and temporary files
p.false_positive_rate = 0.4 # higher false positive rate -> smaller index

cobs.compact_construct("/path/to/documents", "my_index.cobs_compact", index_params=p)

Besides compact indices, COBS also constructs and supports “classic” indices. These are however usually not be used
in practice and thus not discussed here further.

1.1.4 Querying an Index

To query an index, first load it using a Search object. This method detects the type of index, reads the metadata, and
opens the entire file using mmap.

Querying is performed with the Search.search() method. This method returns a list containing pairs:
(#occurrences, document name).

import cobs_index as cobs

s = cobs.Search("out.cobs_compact")
r = s.search("AGTCAACGCTAAGGCATTTCCCCCCTGCCTCCTGCCTGCTGCCAAGCCCT")
print(r)
output: [(20, 'sample1'), (16, 'sample2'), ...]

With the default search parameters all document scores are returned. For large corpora creating this Python list
is a substantial overhead, such that the result set should be limited using a) the threshold parameter or b) the

4 Chapter 1. Table of Contents

COBS Documentation, Release 0.1.2

num_results parameter. Threshold determines the fraction of k-mers in the query a document be reach to be
included in the result, while num_results simply limits the list size to a given number.

1.1. Tutorial for COBS Python Interface 5

	Table of Contents
	Tutorial for COBS Python Interface

